Octokit

Ruby toolkit for the GitHub API.

Logo

Octokit 2.0 is out, check the Upgrade Guide before upgrading from 1.x.

Philosophy

API wrappers should reflect the idioms of the language in which they were written. Octokit.rb wraps the GitHub API in a flat API client that follows Ruby conventions and requires little knowledge of REST. Most methods have positional arguments for required input and an options hash for optional parameters, headers, or other options:

# Fetch a README with Accept header for HTML format
Octokit.readme 'al3x/sovereign', :accept => 'application/vnd.github.html'

Quick start

Install via Rubygems

gem install octokit

... or add to your Gemfile

gem "octokit", "~> 3.0"

Making requests

API methods are available as module methods (consuming module-level configuration) or as client instance methods.

# Provide authentication credentials
Octokit.configure do |c|
  c. = 'defunkt'
  c.password = 'c0d3b4ssssss!'
end

# Fetch the current user
Octokit.user

or

# Provide authentication credentials
client = Octokit::Client.new(:login => 'defunkt', :password => 'c0d3b4ssssss!')
# Fetch the current user
client.user

Consuming resources

Most methods return a Resource object which provides dot notation and [] access for fields returned in the API response.

# Fetch a user
user = Octokit.user 'jbarnette'
puts user.name
# => "John Barnette"
puts user.fields
# => <Set: {:login, :id, :gravatar_id, :type, :name, :company, :blog, :location, :email, :hireable, :bio, :public_repos, :followers, :following, :created_at, :updated_at, :public_gists}>
puts user[:company]
# => "GitHub"
user.rels[:gists].href
# => "https://api.github.com/users/jbarnette/gists"

Note: URL fields are culled into a separate .rels collection for easier Hypermedia support.

Accessing HTTP responses

While most methods return a Resource object or a Boolean, sometimes you may need access to the raw HTTP response headers. You can access the last HTTP response with Client#last_response:

user      = Octokit.user 'andrewpthorp'
response  = Octokit.last_response
etag      = response.headers[:etag]

Authentication

Octokit supports the various authentication methods supported by the GitHub API:

Basic Authentication

Using your GitHub username and password is the easiest way to get started making authenticated requests:

client = Octokit::Client.new \
  :login    => 'defunkt',
  :password => 'c0d3b4ssssss!'

user = client.user
user.
# => "defunkt"

While Basic Authentication allows you to get started quickly, OAuth access tokens are the preferred way to authenticate on behalf of users.

OAuth access tokens

OAuth access tokens provide two main benefits over using your username and password:

To use an access token with the Octokit client, pass your token in the :access_token options parameter in lieu of your username and password:

client = Octokit::Client.new(:access_token => "<your 40 char token>")

user = client.user
user.
# => "defunkt"

You can create access tokens through your GitHub Account Settings or with a basic authenticated Octokit client:

client = Octokit::Client.new \
  :login    => 'defunkt',
  :password => 'c0d3b4ssssss!'

client.create_authorization(:scopes => ["user"], :note => "Name of token")
# => <your new oauth token>

Two-Factor Authentication

Two-Factor Authentication brings added security to the account by requiring more information to login.

Using two-factor authentication for API calls is as simple as adding the required header as an option:

client = Octokit::Client.new \
  :login    => 'defunkt',
  :password => 'c0d3b4ssssss!'

user = client.user("defunkt", :headers => { "X-GitHub-OTP" => "<your 2FA token>" })

As you can imagine, this gets annoying quick since two-factor auth tokens are very short lived. So it is recommended to create an oauth token for the user to communicate with the API:

client = Octokit::Client.new \
  :login    => 'defunkt',
  :password => 'c0d3b4ssssss!'

client.create_authorization(:scopes => ["user"], :note => "Name of token",
                            :headers => { "X-GitHub-OTP" => "<your 2FA token>" })
# => <your new oauth token>

Using a .netrc file

Octokit supports reading credentials from a netrc file (defaulting to ~/.netrc). Given these lines in your netrc:

machine api.github.com
   defunkt
  password c0d3b4ssssss!

You can now create a client with those credentials:

client = Octokit::Client.new(:netrc => true)
client.
# => "defunkt"

But I want to use OAuth you say. Since the GitHub API supports using an OAuth token as a Basic password, you totally can:

machine api.github.com
  login defunkt
  password <your 40 char token>

Note: Support for netrc requires adding the netrc gem to your Gemfile or .gemspec.

Application authentication

Octokit also supports application-only authentication using OAuth application client credentials. Using application credentials will result in making anonymous API calls on behalf of an application in order to take advantage of the higher rate limit.

client = Octokit::Client.new \
  :client_id     => "<your 20 char id>",
  :client_secret => "<your 40 char secret>"

user = client.user 'defunkt'

Pagination

Many GitHub API resources are paginated. While you may be tempted to start adding :page parameters to your calls, the API returns links to the next, previous, and last pages for you in the Link response header as Hypermedia link relations.

issues = Octokit.issues 'rails/rails', :per_page => 100
issues.concat Octokit.last_response.rels[:next].get.data

Auto pagination

For smallish resource lists, Octokit provides auto pagination. When this is enabled, calls for paginated resources will fetch and concatenate the results from every page into a single array:

Octokit.auto_paginate = true
issues = Octokit.issues 'rails/rails'
issues.length

# => 702

Note: While Octokit auto pagination will set the page size to the maximum 100, and seek to not overstep your rate limit, you probably want to use a custom pattern for traversing large lists.

Configuration and defaults

While Octokit::Client accepts a range of options when creating a new client instance, Octokit's configuration API allows you to set your configuration options at the module level. This is particularly handy if you're creating a number of client instances based on some shared defaults.

Configuring module defaults

Every writable attribute in Octokit::Configurable can be set one at a time:

Octokit.api_endpoint = 'http://api.github.dev'
Octokit.web_endpoint = 'http://github.dev'

or in batch:

Octokit.configure do |c|
  c.api_endpoint = 'http://api.github.dev'
  c.web_endpoint = 'http://github.dev'
end

Using ENV variables

Default configuration values are specified in Octokit::Default. Many attributes will look for a default value from the ENV before returning Octokit's default.

# Given $OCTOKIT_API_ENDPOINT is "http://api.github.dev"
Octokit.api_endpoint

# => "http://api.github.dev"

Deprecation warnings and API endpoints in development preview warnings are printed to STDOUT by default, these can be disabled by setting the ENV OCTOKIT_SILENT=true.

Hypermedia agent

Starting in version 2.0, Octokit is hypermedia-enabled. Under the hood, Octokit::Client uses Sawyer, a hypermedia client built on Faraday.

Hypermedia in Octokit

Resources returned by Octokit methods contain not only data but hypermedia link relations:

user = Octokit.user 'technoweenie'

# Get the repos rel, returned from the API
# as repos_url in the resource
user.rels[:repos].href
# => "https://api.github.com/users/technoweenie/repos"

repos = user.rels[:repos].get.data
repos.last.name
# => "faraday-zeromq"

When processing API responses, all *_url attributes are culled in to the link relations collection. Any url attribute becomes .rels[:self].

URI templates

You might notice many link relations have variable placeholders. Octokit supports URI Templates for parameterized URI expansion:

repo = Octokit.repo 'pengwynn/pingwynn'
rel = repo.rels[:issues]
# => #<Sawyer::Relation: issues: get https://api.github.com/repos/pengwynn/pingwynn/issues{/number}>

# Get a page of issues
repo.rels[:issues].get.data

# Get issue #2
repo.rels[:issues].get(:uri => {:number => 2}).data

The Full Hypermedia Experience™

If you want to use Octokit as a pure hypermedia API client, you can start at the API root and follow link relations from there:

root = Octokit.root
root.rels[:repository].get :uri => {:owner => "octokit", :repo => "octokit.rb" }

Octokit 3.0 aims to be hypermedia-driven, removing the internal URL construction currently used throughout the client.

Upgrading guide

Version 2.0 includes a completely rewritten Client factory that now memoizes client instances based on unique configuration options. Breaking changes also include:

Advanced usage

Since Octokit employs Faraday under the hood, some behavior can be extended via middleware.

Debugging

Often, it helps to know what Octokit is doing under the hood. You can add a logger to the middleware that enables you to peek into the underlying HTTP traffic:

stack = Faraday::RackBuilder.new do |builder|
  builder.response :logger
  builder.use Octokit::Response::RaiseError
  builder.adapter Faraday.default_adapter
end
Octokit.middleware = stack
Octokit.user 'pengwynn'
I, [2013-08-22T15:54:38.583300 #88227]  INFO -- : get https://api.github.com/users/pengwynn
D, [2013-08-22T15:54:38.583401 #88227] DEBUG -- request: Accept: "application/vnd.github.beta+json"
User-Agent: "Octokit Ruby Gem 2.0.0.rc4"
I, [2013-08-22T15:54:38.843313 #88227]  INFO -- Status: 200
D, [2013-08-22T15:54:38.843459 #88227] DEBUG -- response: server: "GitHub.com"
date: "Thu, 22 Aug 2013 20:54:40 GMT"
content-type: "application/json; charset=utf-8"
transfer-encoding: "chunked"
connection: "close"
status: "200 OK"
x-ratelimit-limit: "60"
x-ratelimit-remaining: "39"
x-ratelimit-reset: "1377205443"
...

See the Faraday README for more middleware magic.

Caching

If you want to boost performance, stretch your API rate limit, or avoid paying the hypermedia tax, you can use Faraday Http Cache.

Add the gem to your Gemfile

gem 'faraday-http-cache'

Next, construct your own Faraday middleware:

stack = Faraday::RackBuilder.new do |builder|
  builder.use Faraday::HttpCache
  builder.use Octokit::Response::RaiseError
  builder.adapter Faraday.default_adapter
end
Octokit.middleware = stack

Once configured, the middleware will store responses in cache based on ETag fingerprint and serve those back up for future 304 responses for the same resource. See the project README for advanced usage.

Hacking on Octokit.rb

If you want to hack on Octokit locally, we try to make bootstrapping the project as painless as possible. To start hacking, clone and run:

script/bootstrap

This will install project dependencies and get you up and running. If you want to run a Ruby console to poke on Octokit, you can crank one up with:

script/console

Using the scripts in ./scripts instead of bundle exec rspec, bundle console, etc. ensures your dependencies are up-to-date.

Running and writing new tests

Octokit uses VCR for recording and playing back API fixtures during test runs. These cassettes (fixtures) are part of the Git project in the spec/cassettes folder. If you're not recording new cassettes you can run the specs with existing cassettes with:

script/test

Octokit uses environmental variables for storing credentials used in testing. If you are testing an API endpoint that doesn't require authentication, you can get away without any additional configuration. For the most part, tests use an authenticated client, using a token stored in ENV['OCTOKIT_TEST_GITHUB_TOKEN']. There are several different authenticating method's used accross the api. Here is the full list of configurable environmental variables for testing Octokit:

ENV Variable Description
OCTOKIT_TEST_GITHUB_LOGIN GitHub login name (preferably one created specifically for testing against).
OCTOKIT_TEST_GITHUB_PASSWORD Password for the test GitHub login.
OCTOKIT_TEST_GITHUB_TOKEN Personal Access Token for the test GitHub login.
OCTOKIT_TEST_GITHUB_CLIENT_ID Test OAuth application client id.
OCTOKIT_TEST_GITHUB_CLIENT_SECRET Test OAuth application client secret.
OCTOKIT_TEST_GITHUB_REPOSITORY Test repository to perform destructive actions against, this should not be set to any repository of importance. Automatically created by the test suite if nonexistent Default: api-sandbox
OCTOKIT_TEST_GITHUB_ORGANIZATION Test organization.

Since we periodically refresh our cassettes, please keep some points in mind when writing new specs.

Supported Ruby Versions

This library aims to support and is tested against the following Ruby implementations:

If something doesn't work on one of these Ruby versions, it's a bug.

This library may inadvertently work (or seem to work) on other Ruby implementations, but support will only be provided for the versions listed above.

If you would like this library to support another Ruby version, you may volunteer to be a maintainer. Being a maintainer entails making sure all tests run and pass on that implementation. When something breaks on your implementation, you will be responsible for providing patches in a timely fashion. If critical issues for a particular implementation exist at the time of a major release, support for that Ruby version may be dropped.

Versioning

This library aims to adhere to Semantic Versioning 2.0.0. Violations of this scheme should be reported as bugs. Specifically, if a minor or patch version is released that breaks backward compatibility, that version should be immediately yanked and/or a new version should be immediately released that restores compatibility. Breaking changes to the public API will only be introduced with new major versions. As a result of this policy, you can (and should) specify a dependency on this gem using the Pessimistic Version Constraint with two digits of precision. For example:

spec.add_dependency 'octokit', '~> 3.0'

License

Copyright (c) 2009-2014 Wynn Netherland, Adam Stacoviak, Erik Michaels-Ober

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.